PELUANG, PERMUTASI &
KOMBINASI MATEMATIKA
1) Peluang Matematika
Peluang atau kebolehjadian atau dikenal juga sebagai probabilitas
adalah cara untuk mengungkapkan pengetahuan atau kepercayaan bahwa
suatu kejadian akan berlaku atau telah terjadi. Konsep ini telah
dirumuskan dengan lebih ketat dalam matematika, dan kemudian digunakan secara lebih luas dalam tidak hanya dalam matematika atau statistika, tapi juga keuangan, sains dan filsafat.
1. Pengertian Ruang Sampel dan Kejadian
Himpunan S dari semua kejadian atau peristiwa yang mungkin mucul dari
suatu percobaan disebut ruang sampel. Kejadian khusus atau suatu unsur
dari S disebut titik sampel atau sampel. Suatu kejadian A adalah suatu
himpunan bagian dari ruang sampel S.
Contoh:Diberikan percobaan pelemparan 3 mata uang logam sekaligus 1 kali, yang masing-masing memiliki sisi angka ( A ) dan gambar ( G ). Jika P adalah kejadian muncul dua angka, tentukan S, P (kejadian)!
Jawab :
S = { AAA, AAG, AGA, GAA, GAG, AGG, GGA, GGG}
P = {AAG, AGA, GAA}
2. Pengertian Peluang Suatu Kejadian
Pada suatu percobaan terdapat n hasil yang mungkin dan masing-masing
berkesempatan sama untuk muncul. Jika dari hasil percobaan ini terdapat k
hasil yang merupakan kejadian A, maka peluang kejadian A ditulis P ( A )
ditentukan dengan rumus :
Contoh :
Pada percobaan pelemparan sebuah dadu, tentukanlah peluang percobaan kejadian muncul bilangan genap!
Jawab :
S = { 1, 2, 3, 4, 5, 6} maka n ( S ) = 6
Misalkan A adalah kejadian muncul bilangan genap, maka:
A = {2, 4, 6} dan n ( A ) = 3
Jadi, peluang suatu kejadian terletak pada interval tertutup [0,1].
Suatu kejadian yang peluangnya nol dinamakan kejadian mustahil dan
kejadian yang peluangnya 1 dinamakan kejadian pasti.
4. Frekuensi Harapan Suatu Kejadian
Jika A adalah suatu kejadian pada frekuensi ruang sampel S dengan
peluang P ( A ), maka frekuensi harapan kejadian A dari n kali percobaan
adalah n x P( A ).
Contoh :
Bila sebuah dadu dilempar 720 kali, berapakah frekuensi harapan dari munculnya mata dadu 1? Jawab :
Pada pelemparan dadu 1 kali, S = { 1, 2, 3, 4, 5, 6 } maka n (S) = 6.

Misalkan A adalah kejadian munculnya mata dadu 1, maka:
Contoh :
Bila sebuah dadu dilempar 720 kali, berapakah frekuensi harapan dari munculnya mata dadu 1? Jawab :
Pada pelemparan dadu 1 kali, S = { 1, 2, 3, 4, 5, 6 } maka n (S) = 6.

Misalkan A adalah kejadian munculnya mata dadu 1, maka:
5. Peluang Komplemen Suatu Kejadian
Misalkan S adalah ruang sampel dengan n ( S ) = n, A adalah kejadian
pada ruang sampel S, dengan n ( A ) = k dan Ac adalah komplemen kejadian
A, maka nilai n (Ac) = n – k, sehingga :
Jadi, jika peluang hasil dari suatu percobaan adalah P, maka peluang hasil itu tidak terjadi adalah (1 – P).
- Peluang Kejadian Majemuk
1. Gabungan Dua Kejadian
Catatan :
dibaca “ Kejadian A atau B dan
dibaca “Kejadian A dan B”
Contoh :
Pada pelemparan sebuah dadu, A adalah kejadian munculnya bilangan komposit dan B adalah kejadian muncul bilangan genap. Carilah peluang kejadian A atau B!
Jawab :


Contoh :
Pada pelemparan sebuah dadu, A adalah kejadian munculnya bilangan komposit dan B adalah kejadian muncul bilangan genap. Carilah peluang kejadian A atau B!
Jawab :
2. Kejadian-kejadian Saling Lepas
Untuk setiap kejadian berlaku
Jika
. Sehingga
Dalam kasus ini, A dan B disebut dua kejadian saling lepas.



3. Kejadian Bersyarat
Jika P (B) adalah peluang kejadian B, maka P (A|B) didefinisikan sebagai peluang kejadian A dengan syarat B telah terjadi. Jika
adalah peluang terjadinya A dan B, maka
Dalam kasus ini, dua kejadian tersebut tidak saling bebas.


4. Teorema Bayes
Teorema Bayes(1720 – 1763) mengemukakan hubungan antara P (A|B) dengan P ( B|A ) dalam teorema berikut ini :


5. Kejadian saling bebas Stokhastik
Misalkan A dan B adalah kejadian – kejadian pada ruang sampel S, A
dan B disebut dua kejadian saling bebas stokhastik apabila kemunculan
salah satu tidak dipengaruhi kemunculan yang lainnya atau : P (A | B) = P
(A), sehingga:
- Sebaran Peluang
1. Pengertian Peubah acak dan Sebaran Peluang.
Peubah acak X adalah fungsi dari suatu sampel S ke bilangan real R. Jika
X adalah peubah acak pada ruang sampel S denga X (S) merupakan himpunan
berhingga, peubah acak X dinamakan peubah acak diskrit. Jika Y adalah
peubah acak pada ruang sampel S dengan Y(S) merupakan interval, peubah
acak Y disebut peubah acak kontinu. Jika X adalah fungsi dari sampel S
ke himpunan bilangan real R, untuk setiap
dan setiap
maka:


Misalkan X adalah peubah acak diskrit pada ruang sampel S, fungsi
masa peluang disingkat sebaran peluang dari X adalah fungsi f dari R
yang ditentukan dengan rumus berikut :
2. Sebaran Binom
Sebaran Binom atau Distribusi Binomial dinyatakan dengan rumus sebagai berikut :
Rumus ini dinyatakan sebagai:
P = Peluang sukses
n = Banyak percobaan
x = Muncul sukses
n-x = Muncul gagal
2) Permutasi
Permutasi adalah susunan unsur-unsur yang berbeda dalam urutan tertentu. Pada permutasi urutan diperhatikan sehingga 

Permutasi k unsur dari n unsur
adalah
semua urutan yang berbeda yang mungkin dari k unsur yang diambil dari n
unsur yang berbeda. Banyak permutasi k unsur dari n unsur ditulis
atau
.



Contoh permutasi siklis :
Suatu keluarga yang terdiri atas 6 orang duduk mengelilingi sebuah meja makan yang berbentuk lingkaran. Berapa banyak cara agar mereka dapat duduk mengelilingi meja makan dengan cara yang berbeda?
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :
Suatu keluarga yang terdiri atas 6 orang duduk mengelilingi sebuah meja makan yang berbentuk lingkaran. Berapa banyak cara agar mereka dapat duduk mengelilingi meja makan dengan cara yang berbeda?
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :
3) Kombinasi
Kombinasi adalah susunan unsur-unsur dengan tidak memperhatikan
urutannya. Pada kombinasi AB = BA. Dari suatu himpunan dengan n unsur
dapat disusun himpunan bagiannya dengan untuk
Setiap himpunan bagian dengan k unsur dari himpunan dengan unsur n disebut kombinasi k unsur dari n yang dilambangkan dengan , 


Contoh :
Tentukan banyak himpunan bagian dari himpunan A yang memiliki 2 unsur!
Jawab :
Banyak himpunan bagian dari A yang memiliki 2 unsur adalah C (6, 2).
Sumber :
Tidak ada komentar:
Posting Komentar